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Abstract
Inhibitor of Apoptosis Proteins act as E3 ubiquitin ligases to regulate NF-κB signalling from multiple pattern
recognition receptors including NOD2, as well as TNF Receptor Superfamily members. Loss of XIAP in humans causes
X-linked Lymphoproliferative disease type 2 (XLP-2) and is often associated with Crohn’s disease. Crohn’s disease is also
caused by mutations in the gene encoding NOD2 but the mechanisms behind Crohn’s disease development in XIAP
and NOD2 deficient-patients are still unknown. Numerous other mutations causing Crohn’s Disease occur in genes
controlling various aspects of autophagy, suggesting a strong involvement of autophagy in preventing Crohn’s
disease. Here we show that the IAP proteins cIAP2 and XIAP are required for efficient fusion of lysosomes with
autophagosomes. IAP inhibition or loss of both cIAP2 and XIAP resulted in a strong blockage in autophagic flux and
mitophagy, suggesting that XIAP deficiency may also drive Crohn’s Disease due to defects in autophagy.

Introduction
IAPs are ubiquitin ligases that regulate the activity of

TNF Super Family Receptors (TNFSFR), TLRs and NOD
receptors. By attaching ubiquitin onto substrates such as
RIPK1 they regulate the activation of NF-κB and deter-
mine the outcome of signals from these receptors. Their
inhibition results in skewing of signals towards death and
also production of an inflammatory cytokine response1–4.
The three best characterised and functionally related IAP
members are cIAP1, cIAP2 and XIAP. cIAP1 and cIAP2
act together in complex with TRAF2 and TRAF35–7. Loss
of cIAP1 leads to defective NF-κB signals from partner
receptors such as TNFR1 and additional activation of
non-canonical NF-κB1. Less is known about XIAP and its
regulation other than it is required for NF-κB signals from

NOD2 receptor due to its ubiquitylation activity towards
RIPK28.
Genetic loss of cIAP1, cIAP2 and XIAP results in severe

systemic inflammation characterised by massive increases
in many cytokines including TNF and IL-1β 2. IAP
antagonist drugs are also able to trigger activation of
NLRP3 inflammasomes in LPS primed macrophages3. In
both cases there appears to be an important role for XIAP,
in addition to cIAP1 and cIAP2, in suppressing this
inflammatory cascade suggesting some redundancy in the
function of IAPs.
Humans with mutations in XIAP often develop Crohn’s

disease (CD) but may also suffer from X-linked lympho-
proliferative disease 2 (XLP-2)9–12. NOD2 is also com-
monly mutated in CD patients13–16. Although mutations
in XIAP affect the activation of NOD2, the molecular
mechanisms behind CD in these mutations are still not
clear. Another gene commonly mutated in CD is the
autophagy gene ATG16L117. NOD2 and Atg16L1 are also
functionally linked with NOD2 being required for
recruiting ATG16L1 to internalised bacteria such as
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Salmonella during xenophagy, the targeted autophagy of
invading bacteria18. CD associated mutations in NOD2
and Atg16L1 were also shown to block autophagy
induction by NOD2 and reduce the xenophagy of invad-
ing Salmonella19. Defects in Atg16L1 or NOD2 also
increased the replication of adherent-invasive Escherichia
coli (AIEC) in macrophages, resulting in enhanced cyto-
kine production. Conversely, induction of autophagy in
NOD2−/− macrophages reduced survival of AIEC and
cytokine production20. Together these data suggest that

autophagy is a key pathway linking NOD2 and ATG16L1
in the development of Crohn’s disease and hint that XIAP
may also have some role in autophagy regulation.
Autophagy is a highly conserved pathway for recycling

cellular components in times of nutrient limitation.
Autophagosomes are formed around cellular components
such as bulk cytoplasm (macroautophagy), but also spe-
cific targets including mitochondria (mitophagy), invasive
bacteria (xenophagy) and aggregated proteins (aggre-
phagy). In each case phagophores, fuse to make

Fig. 1 IAP inhibition triggers autophagosome accumulation. a Wild type MEFs expressing mcherry-GFP-LC3b were treated with the indicated
doses of LCL161or thapsigargin for 6 h. DNA was stained using Hoechst and live Cells were imaged to visualise mCherry, GFP and Hoechst. The
number of GFP+ puncta and mCherry+ puncta were then counted per cell and the ratio of GFP+ /mCherry+ puncta calculated. Graphs represent
the mean and error bars show SEM of at least 3 experiments. b IAP antagonism does not block lysosomal acidification. Wild type MEFs were treated
with either LCL161 (5 μM), thapsigargin (3 μM) or concanamycin A (2 nM) for 6 h. Cells were stained with lysotracker red and visualised by microscopy
or lysotracker intensity measured via flow cytometry. Graphs represent the mean of the geometric mean fluorescence intensity measured by flow
cytometry and error bars show SEM of at least 3 independent experiments. P values were calculated using T-test in Prism software
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autophagosomes that fuse with lysosomes, releasing their
contents to be degraded and recycled (reviewed in refs.21–
23). Autophagy is also linked to many other functions in
animals, including regulation of the immune system at
various levels such as xenophagy, MHCII presentation,
limiting cytokine production in response to infection, and
in protein folding diseases such as Alzheimer’s disease
(AD) (reviewed in refs.24–27).
We here show that both cIAP2 and XIAP promote

autophagosome–lysosome fusion and that their loss or
inhibition results in accumulation of autophagosomes and
lysosomes and defects in mitophagy and xenophagy.

Results
IAP antagonism causes accumulation of autophagosomes
To determine if there was any effect of IAP antagonists

on autophagy, Mouse Embryonic Fibroblasts (MEFs) were
infected with pBabe-mCherry-EGFP-LC3b. GFP fluores-
cence is sensitive to pH and decreases in the acidic
environment of autolysosomes while mCherry retains its
fluorescence. Due to this property of GFP, this reporter
can be used to assess the rate at which autophagosomes
are synthesised and degraded by lysosomes.
Since there is continuous fusion with lysosomes at

steady state, there are more single mCherry+ puncta in
cells expressing GFP-mCherry-LC3b than GFP+
mCherry+ puncta, and the ratio of GFP+ and mCherry
+ puncta can be used to illustrate this spontaneous
fusion. The Cells were treated with the IAP antagonist
LCL-16128. Upon treatment of MEFs with LCL161, there
was a clear accumulation of GFP+ puncta at doses as low
as 500 nM (Fig. 1a). A slight accumulation of mCherry+
puncta could also be detected at this dose but the ratio of
GFP/mCherry increased substantially. Treatment with 5
μM LCL161 resulted in more mCherry+GFP+ puncta
and a ratio of GFP+ /mCherry+ close to one (Fig. 1a).
Similar results were seen with an unrelated IAP antago-
nist, birinapant that also lead to significant blockage of
fusion events, but only at doses of 50 µM or above
(Supplementary Fig. 1). Thapsigargin, an irreversible
inhibitor of the SERCA calcium pumps of the ER, has
been shown to specifically inhibit the fusion of autophagic
vesicles with lysosomes, resulting in build up of GFP+
mCherry+ puncta29. As a positive control, MEFs were
also treated with thapsigargin, which triggered a build up
of GFP+mCherry+ puncta as expected. The ratio of
GFP+ /mCherry+ puncta was close to one, reflecting its
function in blocking fusion of autophagosomes with
lysosomes and similar to the results seen for treatment
with IAP antagonists (Fig. 1a). IAP-antagonism therefore
causes a build-up of GFP+mCherry+ LC3 positive
vesicles in MEFs.
This build-up of GFP+mCherry+ LC3 positive vesi-

cles could be a result of either a deficiency in turnover of

autophagosomes or an increase in activation of autop-
hagy. Defects in autophagosome turnover occur by a
number of mechanisms. One possibility is a failure to
acidify the autolysosome, resulting in defective lysosomal
enzyme function. Such an effect is seen upon the addition
of drugs like concanamycin A, an inhibitor of this later
stage in autophagy that blocks the activity of ATPase
proton pumps in the lysosome, preventing acidification
and blocking degradation of lysosomal cargo.
To rule out an effect of IAP antagonists on lysosomal

acidification, MEFs were treated with IAP antagonists or
concanamycin A to block acidification, or thapsigargin to
block autophagosomal fusion with lysosomes. MEFs were
then stained with Lysotracker Red, which only fluoresces
when lysosomes are acidified. Cells were analysed by
microscopy and flow cytometry (Fig. 1b). IAP antagonist
treatment did not reduce lysotracker fluorescence
whereas Concanamycin A did (Fig. 1b). Both thapsigargin
treatment and higher doses of LCL161 enhanced lyso-
tracker staining (Fig. 1b), suggesting a possible accumu-
lation of lysosomes in addition to autophagosomes. IAP
antagonists do not therefore affect the acidification of
lysosomes, but do lead to a build-up of mCherry+ /GFP
+ positive puncta in a fashion similar to thapsigargin.
Electron Microscopy (EM) was performed on LCL161

treated MEFs, as well as thapsigargin treated MEFs and
untreated controls. LCL161 treated cells showed a clear
increase in vesicular structures containing cellular debris
suggesting they are autophagosomes (Fig. 2). The same
was seen for thapsigargin treatment. Of note is that
electron dense lysosomes cluster in regions adjacent to
autophagosomes, but do not appear to be fused with the
autophagosomes (Fig. 2). Immunofluoresence was also
perfomed on wt MEFs treated with LCL161 or birinapant
to confirm that endogenous LC3 also shows a similar
accumulation after IAP antagonism (Fig. 3). There is a
striking accumulation of autophagosomes, in the peri-
nuclear region. Surprisingly these autophagosomes appear
to surround lysosomes (LAMP2+ structures) as opposed
to co-localising with them which is similar to the non-
fused, but associated, autophagosomes and lysosomes
seen by EM (Fig. 2) and is indicative of recruitment of
autophagosomes to lysosomes, but failure to fuse. The
same effect was seen with birinapant but to a lesser extent
than with LCL161.

IAP antagonists block autophagic flux
Blocking fusion of autophagosomes with lysosomes

hinders autophagic flux. Autophagic flux can be analysed
by preventing formation of new autophagosomes and
chasing preformed autophagosomes through to their
fusion with lysosomes. Inhibition of PI3K activity blocks
the early stages of autophagosome formation, but allows
existing autophagosomes to continue through autophagic
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Fig. 2 Electron microscopy of IAP antagonist treated cells shows autophagosome and lysosome accumulation. MEFs were treated with
thapsigargin (3 μM) or LCL161 (0.5 μM) for 6 h. Cells were fixed and analysed by EM. a Overview of whole cells showing increased vesicularization in
LCL161 and thapsigargin treated cells. b Magnification of LCL161 (I–II) or thapsigargin (IV–VI) treated cells showing I+IV. Accumulation of lysosomes,
II+V. Lysosome associated but not fused to autophagosome, III+VI. Autophagosomes with cellular debris inside
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flux, and be degraded by lysosomes. In cells expressing
mCherry-GFP-LC3b this leads to the loss in the GFP
signal29.
To analyse if IAP antagonists can block fusion with

lysosomes, cells were first starved in HBSS and treated
with different combinations of PI3K inhibitor and/or IAP
antagonist or thapsigargin. When cells were first starved
by incubation in HBSS for 2 h, there was, as expected, a
substantial increase in the number of GFP+ puncta, while
the number of mCherry+ puncta remained grossly
similar (Fig. 4a). Addition of LY294002 (LY), a PI3K
inhibitor known to block autophagy, for 1 h caused the
number of GFP+ puncta to return to control levels,
showing that the existing autophagosomes fused with
lysosomes and lost their GFP fluorescence. Addition of
LCL161 with LY reversed this GFP+ puncta loss, as did
addition of thapsigargin. Conversely, addition of LY to
cells pre-treated with LCL161 or thapsigargin failed to
reduce the number of autophagosomes which had accu-
mulated (Fig. 4a) confirming that pre-existing autopha-
gosomes did not chase through to fusion with lysosomes.

These data show that LCL and thapsigargin can both
block the turnover of existing autophagosomes that have
been triggered to form by starvation. These experiments
were also performed with 0.5 μM LCL161 with similar
results although reduced in degree (data not shown).
Autophagic flux was further analysed by measuring

induction of LC3-II in response to concanamycin A
treatment. Concanamycin A, as described above, blocks
the last stages of autophagy by blocking acidification of
lysosomes. Addition of concanamycin A therefor leads to
increased LC3-II levels when autophagy is induced for
example by starvation, but shows no increase in LC3-II
levels if the late stages of autophagy are blocked, due to
the redundancy in effect. We therefore treated MEFs
expressing mCherry-GFP-LC3 with either HBSS to
induce starvation, or with LCL161. Cells were treated with
concanamycin A and analysed by Western blot for levels
of mCherry-GFP-LC3-II. There was a clear concanamycin
A induced increase in LC3-II in both control and HBSS
treated cells, however concanamycin A failed to increase
LC3-II in LCL161 treated cells (Fig. 4). Similar results

Fig. 3 Endogenous LC3 accumulates around lysosomes. Wild type MEFs were treated with LCL161 (5 µM) or birinapant (50 µM) or DMSO as a
control for 6 h. Cells were fixed and stained with antibodies against LAMP2 (red channel) and LC3 (green channel). Cells were imaged by confocal
microscopy
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Fig. 4 (See legend on next page.)

Gradzka et al. Cell Death and Disease  (2018) 9:529 Page 6 of 15

Official journal of the Cell Death Differentiation Association



were seen using birinapant (data not shown). These
results again argue that IAP antagonism blocks autophagy
autophagosome–lysosome fusion stage.

cIAP2 and XIAP but not cIAP1 regulate autophagic flux
LCL161 and birinapant both target cIAP1 and cIAP2

with higher affinity than XIAP. The increase in severity of
the phenotype in response to higher doses of
LCL161 suggests that XIAP may play a role. To identify
which IAPs regulate autophagy and to confirm that this
phenotype was specific to IAP antagonism and not an off
target effect of the IAP antagonist drugs, siRNA knock-
down was used to silence expression of cIAP1, cIAP2 or
XIAP. Efficient silencing was achieved for each gene
(Fig. 5a). cIAP2 loss was confirmed using qPCR, cIAP1
and XIAP loss were determined by western blot. Loss of
cIAP2 or XIAP increased GFP+ /mCherry+ ratio closer
to 1, similar to IAP antagonist treatment at lower doses
(0.5 µM) (Fig. 5). Surprisingly however, siRNA against
cIAP1 had no significant effect on the GFP+ /mCherry+
ratio suggesting that build-up of GFP+ autophagosomes
due to IAP antagonism is likely a result of cIAP2 and
XIAP antagonism. We were unable to suppress expres-
sion of both cIAP2 and XIAP simultaneously using siRNA
in MEFs; at the concentrations required the transfection
reagents alone induced build-up of autophagosomes,
something that has previously been reported30. However,
given the higher affinity of birinapant and LCL161 for
cIAP1 and cIAP2 over XIAP, the effect seen at low doses
is likely mostly due to cIAP2 inhibition.
To determine if loss of both cIAP2 and XIAP together

could replicate inhibition of autophagosome–lysosome
fusion seen with higher doses of IAP antagonist drugs,
cIAP1fl/fl cIAP2−/− XIAP−/− dermal fibroblasts were
infected with lentivirus expressing mCherry-GFP-LC3,
and the ratio of GFP+ /mCherry+ vesicles quantified.
Genotyping of the cells confirmed knockout of cIAP2 and
XIAP (Supplementary Fig. 2). The cIAP1fl/fl cIAP2−/−

XIAP−/− cells showed a GFP+ /mCherry+ ratio close to
1 without any treatment (Fig. 5b). Additionally, cIAP1fl/fl

cIAP2−/− XIAP−/− cells have increased endogenous LC3
levels (Fig. 5c). Starvation reduced LC3-II levels in wild
type cells, probably due to a high rate of flux, but this was

less so for cIAP1fl/fl cIAP2−/− XIAP−/− cells, indicating a
reduced rate of flux (Fig. 5c). Immunofluorescence against
Lamp2 and LC3 showed dramatic accumulation of LC3 in
the starved cIAP1fl/fl cIAP2−/− XIAP−/− cells compared
to the wild type (Fig. 5d). At steady state, while there is
some accumulation of autophagosomes, the difference is
not as clear, suggesting adaptation to loss of cIAP2 and
XIAP (Fig. 5d). Loss of both cIAP2 and XIAP together
therefore inhibits autophagosome–lysosome fusion caus-
ing reduced flux through the autophagy pathway

IAP antagonists block turnover of long-lived proteins
Basal autophagic activity is responsible for degradation

of long-lived proteins that are not normally turned over
by proteasomal degradation. To determine if IAP inhibi-
tion could block turnover of long-lived proteins, wild type
and Atg5−/− MEFs were labelled using click-iT chemistry
with L-Azidohomoalanine (AHA). AHA is incorporated
in place of methionine when cells are cultured in
methionine free media. The degradation of long-lived
proteins can then be monitored by labelling with a
fluorophore and monitoring fluorescence by flow
cytometry31.
Starvation in HBSS for three hours resulted in a

decrease in fluorescence indicating a reduction of existing
stained proteins (Fig. 6). The same treatment in ATG5−/−

MEFs showed no significant reduction in fluorescence
confirming the reduction observed is specific to autop-
hagy mediated degradation. Co-incubation of wild type
cells with HBSS and thapsigargin also completely blocked
the decrease in labelled protein, showing that blocking
fusion of autophagosomes and lysosomes also blocks
protein turnover. Co-incubation with HBSS and LCL161
or birinapant also blocked turnover of long-lived proteins
although incompletely, presumably because at these lower
doses XIAP is not targeted and only the loss of cIAP2-
function was observed (Fig. 6).

IAPs do not regulate endocytosis
Autophagosomes use some of the same machinery for

lysosomal fusion as the endocytic trafficking system
including SNAREs, Rab7 and the class C/HOPS tethering
complex29, 32, 33. Blockage of autophagosome–lysosome

(see figure on previous page)
Fig. 4 IAP antagonism blocks autophagic flux. a MEFs expressing mcherry-gfp-lc3b were treated as shown in the timeline by either starving cells
in HBSS for 1 h or treating with thapsigragin (3 μM) or LCL161 (5 μM) for 5 h. LY294002 (20 μM) was then added for 1 h either alone or, in the HBSS
starved conditions, thapsigargin or LCL161 were also added together with LY294002. Cells were imaged and GFP+ and mCherry+ puncta /cell
counted. Graphs show means error bars show SEM of at least 3 experiments. b MEFs expressing mCherry-GFP-LC3b were either left untreated,
starved in HBSS for 2 h or treated with LCL161 (0.5 μM) for 6 h. In each condition cells were also treated with or without concanamycin A (2 nM) for
the final hour. Cells were lysed and levels of mCherry-GFP-LC3B detected by western blot. For each condition the amount of mCherry-GFP-LC3BII was
normalised to actin levels in the non concanamycin A treated sample. The graph shows the mean fold change in mCherry-GFP-LC3BII from at least 3
independent experiments and error bars show SEM. P values were calculated using T-test in Prism software
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fusion may represent a more general defect in endocytic
membrane fusion caused by IAP antagonists. To test this,
we monitored internalisation and degradation of EGFR,
which upon activation is degraded in lysosomes after
endosomal trafficking. There was no change in EGFR
degradation rate in LCL161 treated cells while con-
canamycin A treated cells showed a near complete loss of
degradation (Fig. 7a). Additionally we analysed fluid phase

endocytosis using uptake of fluorescently labelled dextran
and trafficking of labelled endosomes to lysosomes by co-
staining with lysotracker. No difference could be detected
in the amount of dextran-labelled endosomes co-
localising with lysosomes in treated and control cells
(Fig. 7b). This was confirmed by Pearson’s correlation
coefficient analysis, which also clearly showed that the
degree of co-localisation is not altered significantly by IAP

Fig. 5 cIAP2 and XIAP regulate autophagosome fusion, but not cIAP1. a MEFs expressing mCherry-GFP-LC3b were transfected with siRNA
against either cIAP1, cIAP2 or XIAP. Cells were analysed with the microscope and the number of mCherry+, and GFP+ puncta/cell were calculated
and the ratio of GFP+ /mCherry+ puncta is indicated. Shown are the means and the error bars represent the SEM of at least three independent
experiments. Westerns show efficient knockdown of cIAP1 and XIAP expression. cIAP2 siRNA efficiency was determined by real time PCR as shown in
the graph below the westerns. b Wild type and cIAP2−/− XIAP−/− dermal fibroblasts expressing mCherry-GFP-LC3b were treated analysed on the
microscope and mCherry+, and GFP+ puncta/cell were calculated. The ratio of GFP+/mCherry+ puncta is indicated. c Wild type and cIAP2−/−

XIAP−/− dermal fibroblasts were left in complete media (CM) or starved for 2 h in EBSS. Cells were lysed and proteins analysed by western blot for
XIAP, LC3, and Actin. cIAP2−/− was confirmed by PCR due to lack of effective antibodies for mouse cIAP2 (see supplemental Fig. 2). d
Immunofluoresence showing accumulation of LC3 in starved cIAP2−/− XIAP−/− dermal fibroblasts. Wild type and cIAP2−/− XIAP−/− dermal
fibroblasts were incubated in complete media or starved in EBSS for 2 h, then fixed and stained for LC3 (green channel) and LAMP2 (red channel).
Nuclei are stained blue with Hoechst. Shown in upper panels are overviews. Lower panels show zoomed in regions indicated in the upper panels
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antagonism (Fig. 7b). Together these results clearly show
that IAP antagonism has no effect on the endosomal
pathway but instead specifically affects the autophagoso-
mal system.

Mitophagy and xenophagy are blocked in IAP antagonist-
treated cells
One consequence defective autophagy is the accumu-

lation of mitochondria due to failure loss of mitophagy.
We examined the amount of mitochondria in MEFs
treated with LCL161 or thapsigargin by staining with
Mitotracker Green (MG). High dose (5 µM) LCL161 and
thapsigargin treated cells showed a clear increase in MG
signal, while low doses (0.5 μM) showed no significant
increase (Fig. 8a, b). Birinapant also showed an increase in
mitochondrial mass only at the high doses that fully block
fusion (Fig. 8a, b). To confirm that mitophagy is impaired
we turned to HeLa cells overexpressing Parkin as a well-
established model for inducing mitophagy. HeLa cells do
not express endogenous Parkin, a ubiquitin ligase that
ubiquitylates damaged mitochondria and induces their
clearance by mitophagy34. We treated HeLa cells without
Parkin and cells overexpressing mCherry-Parkin with

Oligomycin and Antimycin A to induce mitochondrial
damage either with or without LCL161 or birinapant for
16 h and examined the levels of cytochrome C as a marker
of mitochondria. There was a decrease in cytochrome C
levels with the oligomycin and Antimycin A treatment
only in the Parkin over-expressing cells (Fig. 8c). Addition
of LCL161 restored the levels of cytochrome C to some
extent, however not completely (Fig. 8c). MEFs were also
induced to over-express Parkin and treated in the same
way, but in our hands with all mitochondrial proteins
tested we also saw degradation in ATG5−/− MEFs and
also in non-Parkin over-expressing cells (data not shown),
suggesting that the degradation is not mitophagy in the
MEFs. Similar results have been published previously
indicating that there are few reliable markers for mito-
phagy in MEFs35. Therefor, not only is mitophagy inhib-
ited in IAP antagonist treated cells, but IAP antagonism
also blocks or at least slows the degradation of mito-
chondria by mitophagy in human cells too.
Xenophagy, which is conceptually similar to mitophagy

as it involves the tagging of intracellular bacteria with
ubiquitin followed by engulfment by autophagosomes and
degradation, is an early step in the recognition of a
number of pathogenic bacteria. Salmonella have been
used extensively as a model to study xenophagy and there
is significantly more bacterial survival in autophagy defi-
cient cells36. A block in mitophagy suggests loss of XIAP
could also lead to a deficiency in xenophagy. To test this,
XIAP was knocked out in MEFs using CRISPR-Cas9. Cells
infected under these conditions were fixed and stained
using an antibody against S. Typhimurium LPS and the
number of bacteria in each cell counted, revealing more
salmonella in the XIAP CRISPR cells than in the wild type
(Fig. 8d). This was then confirmed by lysing cells and
calculating the colony forming units (CFU) (Fig. 8e). Most
studies analysing xenophagy have used treatments or
mutants that block the early stages of autophagosome
formation. To the best of our knowledge little is known
about the effect of blocking fusion of autophagosomes
with lysosomes on xenophagy. As a model for blockage of
the fusion of autophagosomes with lysosomes, cells were
also treated with thapsigargin. Following 5 h of infection,
there is consistently more surviving bacteria in ATG5−/−

cells than in wild type as previously reported. Thapsi-
gargin treatment also resulted in accumulation of viable S.
Typhimurium, as did knockout of XIAP in the XIAP-
CRISPR cells (Fig. 8e). Both thapsigargin and XIAP defi-
ciency result in increased S. Typhimurium survival to a
similar extent to Atg5 deficiency, supporting that
Autophagy inhibition is involved in all conditions.

Discussion
While we have demonstrated that cIAP2 and XIAP

promote autophagosome-lysosome fusion, the

Fig. 6 IAP antagonism blocks turnover of long lived proteins.
Wild type or Atg5−/− MEFs were labelled overnight with AHA as
described in methods. Cells were starved in HBSS or treated with HBSS
and LCL161 (0.5 μM), birinapant (0.5 μM) or thapsigargin (3 μM) for
three hours. Click it chemistry was used to label proteins and the
geometric mean fluorescence intensity was measured for each
condition. Shown are the means of at least three independent
experiments and error bars show SEM
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mechanism is still not clear. Ubiquitylation regulates
many steps in vesicle trafficking37 and it is likely that
cIAP2 and XIAP are regulating specific components of
the autophagosome–lysosome fusion machinery via their
ubiquitin ligase activity. The observation that endocytosis
is also not affected by IAP inhibition suggests ubiquity-
lation of some target on the autophagosomes themselves
is likely, however we cannot at this stage rule out that
some other function such as scaffolding may also be
playing a role.

One interesting aspect of these results is that we have
identified cIAP2 and XIAP as playing redundant roles in
regulating autophagy in MEFs. XIAP depletion alone in
humans leads to disease but XIAP−/− mice are in most
aspects normal, although they can be induced to develop
disease similar to XLP-2 in humans by infection with a
herpes virus, MHV-6838. One might expect that if there
was an absolute requirement for XIAP or cIAP2 in
autophagy that mice deficient for either alone would
present with phenotypes associated with defects in

Fig. 7 IAP antagonism does not block endocytosis. a Wild type MEFs were grown overnight in 0.5% serum. Cells were either left untreated as a
control or treated with LCL161 (0.5 μM), birinapant (0.5 μM) for 4 h, or concanamycin A (2 nM) for 1 h before treatment with 100 ng/ml EGF in the
presence of 10 μg/ml cycloheximide for 0, 1 or 2 h. Cells were lysed and levels of EGFR were analysed by western blot. bWild type MEFs were treated
with LCL161 (0.5 μM) or not for 4 h. Alexafluor 647-dextran (100 μg/mL) was added for 30 mins and then cells were washed and grown in normal
media for a further 2 h. The final 30 min cells were stained with lysotracker (100 nM). Cells were fixed and analysed on the fluorescence microscope.
Shown are representative images and line profile of lysotracker and dextran Alexafluor 647. Experiments were performed at least 3 times. Pearsons
correlation coefficients are shown in the right panel. Error bars represent the SEM from at least three experiments
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Fig. 8 IAP antagonism blocks mitophagy and xenophagy. Wild type MEFs were treated overnight with the indicated concentrations of LCL161,
birinapant or thapsigargin. Cells were stained with mitotracker green for 30 min and fluorescence intensity quantified using flow cytometry. a
representative histograms showing increases in mitotracker signal in IAP antagonist treated cells. b quantification of mitotracker staining. Shown are
the means of the geometric mean fluorescence intensity. Error bars are SEM from at least 3 independent experiments. P values were calculated using
t tests in Prism software. c IAP antagonism can block mitophagy. Wild type HeLa cells or HeLa cells expressing mCherry-Parkin were treated with
either LCL161 (5 µM), birinapant (50 µM) or oligomycin (1 µM) and Antimycin A (1 µM) (O/A) alone or in combination as indicated. LCL161 or
birinapant were added 4 h prior to Oligomycin and Antimycin A. Cells were incubated for 16 h before cells were harvested and lysates run on SDS-
PAGE and levels of cytochrome C and β-Actin analysed by western. d Immunofluoresence and quantification of Salmonella Typhimurium infection in
wild type and XIAP CRISPR MEFs. MEFs of the indicated genotypes were infected as described in methods, fixed and stained for Salmonella
Typhimurium LPS. Shown are representative images. The mean number of Salmonella Typhimurium /cell is shown from two experiments. e
Xenophagy of Salmonella Typhimurium is impaired in XIAP deficient cells. Wild type, Atg5−/− and XIAP−/−-CRISPR cells were infected with
Salmonella Typhimurium and incubated for 5 h. CFU/mL of internalised bacteria was then calculated. Thapsigargin was used where indicted to block
autophagosome–lysosome fusion by treating with 3 µM thapsigargin for 1 h before and then throughout the infection protocol. Error bars are SEM
from at least 3 independent experiments. P values were calculated using T tests in Prism software

Gradzka et al. Cell Death and Disease  (2018) 9:529 Page 11 of 15

Official journal of the Cell Death Differentiation Association



autophagy, but loss of both seems to be required before
spontaneous inflammation is seen2. This may be partly
explained by the overlapping functions seen for cIAP2
and XIAP in this study and may explain why XIAP defi-
cient mice do not develop disease like humans do.
Relatively little is known about the substrates of XIAP,

however ubiquitylation of RIPK2 at NOD2 receptors was
shown to be required for NOD2 activation of NF-κB13.
Loss of NF-κB signalling results in a failure to up-
regulate cytokines in response to NOD2 signalling and
this link to NOD2 signalling is thought to be the cause of
Crohn’s disease in XIAP deficient patients. While this
molecular connection between NOD2 and XIAP may
contribute to disease progression, NOD2 mutation does
not lead to the multiple other conditions that XIAP
deficiency causes39, suggesting that the story is not so
simple. There are numerous genes that are involved in
autophagy, including ATG16L1, NDP52, IRGM, and
LRRK2 that have been found to be mutated in Crohn’s
Disease patients; a number of these mutations also
manifest with multiple clinical presentations. Recently,
Niemann–Pick disease type C (NPC), a lysosomal sto-
rage disorder in which the NPC1 gene coding for a
lysosomal protein involved in lipid transport is mutated,
was also linked to early onset Crohn’s disease. Loss of
NPC1 function was also shown to be linked to defective
autophagy resulting in increased survival of intracellular
Salmonella and adherent-invasive E. coli40. Importantly,
this study showed that NOD2 induced NF-κB signalling
is normal in NPC1 mutated cells and enforced autophagy
induction could bypass the xenophagy defect and reduce
intracellular bacterial survival. Similarly impaired xeno-
phagy has also been seen in macrophages from patients
with NOD2 and XIAP mutations. We observed defects in
xenophagy of S. Typhimurium in XIAP deficient fibro-
blasts. Such defects in xenophagy may also contribute to
accumulation of invasive bacteria in XIAP deficient
humans, again increasing the burden of bacteria that
needs to be dealt with by the immune system and
resulting in overactive inflammation. Additionally we
observed an accumulation of mitochondria in cells
treated with IAP antagonists at doses high enough to
block XIAP, as well as cIAP1 and cIAP2, suggesting that
the loss of IAPs also causes defects in mitophagy.
Mitophagy is important for clearing old or damaged
mitochondria and defects in mitophagy have been linked
to excessive ROS production and excessive inflamma-
some activation41. Mitophagy is in many ways mechan-
istically analogous to xenophagy and defects therein may
also contribute to inflammation in XIAP deficient
patients. This suggests that the driving mechanism
behind multiple genetic mutations causing Crohn’s
Disease may be a loss of autophagy, and supports a role
for XIAP in regulating this process.

Many questions remain including dissection of the
mechanism behind cIAP2 and XIAPs regulation of
autophagosome–lysosome fusion, as well as the degree to
which autophagy defects contribute to inflammation
induced by IAP loss. It will be interesting to see if IAPs or
their substrates are also involved in other autophagy
related diseases such as protein misfolding diseases and or
lysosomal storage disorders.

Methods
Reagents
LCL161 and birinapant were purchased from ApexBio.

The following antibodies were used; EGFR (PA1-1110—
Thermo fisher), XIAP (MAB822—R&D Systems), cIAP1
(was a kind gift from John Silke—WEHI Melbourne
Australia), LC3b (nb100–2220—Novus), LAMP2
(ab13524—Abcam). EGF was purchased from Biolegend
(catalogue No. 713108). Alexafluor 647 Dextran
MW10,000 (catalogue No. D-22914), Lysotracker Red
DND-99 (catalogue No. L7528) and Mitotracker Green
(catalogue No. M7514) were purchased from Thermo
Fisher Scientific. Concanamycin A (catalogue No. Cay-
11050-25) was purchased from Cayman Chemical.

Cell culture
All cells were grown in DMEM High glucose (Gibco)

with 10% FCS and 1% Pen/Strep in 5% CO2 at 37 °C
unless otherwise stated.

Fluorescence microscopy of LC3
MEFs of the indicated genotypes were infected with

pBABE-puro-mCherry-EGFP-LC3B (pBABE-puro-
mCherry-EGFP-LC3B was a gift from Jayanta Debnath
(Addgene plasmid # 22418)). Cells were selected in Pur-
omycin 4 μg/ml. The selected cells were seeded at 50,000
cells/well of an 8 chamber μ-slide (Ibidi) and allowed to
plate down overnight. Cells were typically treated for 6 h
with the indicated concentrations of LCL161, birinapant
or thapsigargin (3 μM). Cells were treated for 30 min with
Hoechst to stain nuclei. Cells were imaged with a Keyence
BZ9000 fluorescence microscope taking Z-stacks to and
using the “full focus” function in the analysis software to
make a single layer image from full focused features in
each layer of the Z-stack. These images were used to
count the number of GFP+ and mCherry+ puncta per
cell in image J using the analyse particles function to
count nuclei and find maxima function to count puncta.
The ratio of mCherry+ /GFP+ puncta/cell was calcu-
lated from these measurements.
For Immunofluorescence of LC3 and LAMP2, Wild

type MEFs were seeded in 8 well µ-slides (Ibidi) at 50,000
cells/well and incubated overnight. Cells were treated
with IAP antagonists as indicated and cells were washed
twice in warm PBS. Cell were fixed in 4% PFA in PBS for
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10min followed by washing three times in PBS. Cells were
subsequently permeabilized in PBS with 50 µg/ml Digi-
tonin for 5 min followed by washing three times in PBS
then blocking with 3% BSA in PBS for 30min. Antibodies
against LC3 and Lamp2 were added 1:200 for 1 h in BSA
3% in a humidified chamber at 37 C. Cells were washed
three times in PBS followed by incubating with appro-
priate secondary antibodies at 1:500 in PBS 3% BSA for 1
h followed by washing 5 times in PBS. Images were taken
using a Zeiss LSM 880 with an Airyscan confocal
microscope at a 63 ×magnification (oil immersion) and
analysed with Zen (Zeiss) software.

siRNA treatment
MEFs were seeded at 150,000 cells/well of a 6 well plate.

The next day cells were washed with PBS and media
without antibiotics was added. Cells were transfected with
siRNA’s complexed with Lipofectamine RNAiMAX
according to manufacturers instructions. Briefly, 7.5 µL of
20 µM stock stealth siRNA oligo was added to 150 µL of
optimem. Nine microlitre of RNAiMAX was added to
another 150 µL of optimum. The tubes were mixed
together before incubating at room temperature for 5 min.
250 µL of this was then added to the cells and incubated
overnight. Cells were seeded at 50,000 cells/well of an 8
chamber μ-slide (Ibidi) and allowed to plate down over-
night before microscopy was performed as described
above. The following stealth siRNAs were used from
Thermo Fisher Scientific; cIAP1 (MSS273215), cIAP2
(MSS202113) and XIAP (MSS202115). Activity of each
siRNA was confirmed using qPCR with SYBR Select
Master Mix (applied biosystems # 4472908) and the fol-
lowing primers: cIAP1 (Forward 5′-GAAGAAAATGC
TGACCCTACAGA-3′, Reverse 5′-CATGACGACATC
TTCCGA-3′), cIAP2 (Forward 5′- TCGATGCAGAA
GACGAGA-3′ Reverse 5′-TTTGTTCTTCCGGATTAG
TGC-3′, XIAP (Forward 5′-GCTTGCAAGAGCTGGA
TTTT-3′, Reverse 5′-TGGCTTCCAATCCGTGAG-3′).
Actin was used as a reference gene. PCR was done in 384
well plates in a 7900HT Fast Real-Time PCR System.

Long-lived protein degradation assay
Cells were grown to ~70–80% confluency in a 6-well

plate then washed with warm PBS and cultured in L-
methionine-free DMEM (cat. no. 21013-024, Gibco) for
30–60 min to deplete the intracellular methionine
reserves. Following methionine depletion, the cells were
labelled with 25 μM AHA in 10% dialysed FBS DMEM
(methionine-free) for 18 h. Dialysed FBS was made by
dialyzing against PBS with Slide-A-Lyzer mini dialysis
devices 3.5 k MWCO (Pierce—cat. No. 88403) overnight.
After labelling, the cells were washed with PBS and cul-
tured in regular DMEM containing 10 × L-methionine (2
mM) for 2 h to chase out short-lived proteins. LCL161

(0.5 μM), thapsigargin (3 μM), or birinapant (0.5 μM) were
added at this stage. Cells were washed in PBS and then
cultured for a further 3 h either in full media or HBSS
containing the indicated drugs. Cells were washed 2× in
PBS and then harvested and fixed in 4% formaldehyde in
PBS for 15min at room temperature. After fixation, the
cells are washed twice with 3% BSA in PBS. Cells were
permeabilized with 0.5% Triton X-100 in PBS for 20 min
at room temperature. Cells were resuspended in PBS and
store at 4 °C for detection of the corresponding alkyne-
tagged detection molecule.
Cells from the last step above were washed with 3% BSA

in PBS. 100 μL Click-iT® reaction cocktail was added to
each sample. Cells were incubated for 30min at room
temperature in the dark. Cells were washed once with 3%
BSA in PBS before being analysed using flow cytometry.

EGFR degradation assay
A total of 500,000 cells/well were seeded in the morning

and let to plate down. In the evening, media was
exchanged for DMEM 0.5% FCS and cells incubated
overnight. The next day, cells were pre-treated for 4 h with
IAP antagonists birinapant (0.5 μM) or LCL161 (0.5 μM)
or for 1 h with concanamycin A (2 nM). Media was then
exchanged with serum free media alone or containing the
drugs. Cells were treated with EGF (100 ng/ml) and
cycloheximide (10 μg/ml) for 0, 1 or 2 h. Cells were lysed
on ice in RIPA buffer and 50 µg/ml protein per lane was
run on 10% SDS-PAGE before transferring to nitrocellu-
lose membranes and western blotting for EGFR

Assay of endocytosis and fusion with lysosomes
30,000 cells/well were seeded in 8 well microscope

culture slides (Ibidi) in 300–500 µL media. The next day
cells were treated with DMSO, LCL161 0.5 μM or bir-
inapant (0.5 μM) for 6 h. 2.5 h before end of drug treat-
ments, Dextran Alexafluor 647 was added to a final of
concentration of 100 µg/ml. Cells were incubated for 30
min at 37 °C. Cells were washed 2× in warm PBS. Fresh
media containing LCL161 or birinapant was added and
cells were incubated for a further 2 h. Lysotracker Red
(100 nM) was added for the final 30 min. Cells were
washed 2× in warm PBS before fixation in 4% paraf-
ormaldehyde (PFA) for 20min at room temperature. Cells
were washed 2× in PBS and stored at 4 °C until images
were taken on a Keyence BZ9000 fluorescence micro-
scope. Hoechst was added 30min prior to imaging.
Pearsons correlation coefficients were calculated using the
FIJI distribution of ImageJ and the Coloc2 plugin.

Electron microscopy
MEFs were cultured on glass cover slips and fixed for

20min in 4% PFA plus 1% glutaraldehyde (Roth, Ger-
many) in PBS. After contrastation in 0.5%
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Osmiumtetroxide (30 min at RT) cells were dehydrated
and embedded in epoxy resin (Durcupan, Sigma-Aldrich,
Gillingham, UK). Images were taken using a Philips CM
100 transmission electron microscope.

Mitophagy assays
For mitotracker Green staining, Wild type MEFs were

treated overnight with the indicated concentrations of
LCL161, birinapant or thapsigargin. Cells were incubated
with 100 nM mitotracker Green for 30min in complete
media then washed in PBS and trypsinized then analysed
for fluorescence intensity using flow cytometry on a FACS
Calibur then analysed using FlowJo software.
For analysis of Parkin dependent mitophagy, HeLa cells

were infected with a lentivirus (pXLG3) expressing
mCherry-Parkin (human)42 or left uninfected. These
HeLas were then seeded at 4 × 105 for wild type and 6 × 105

cells/well in 6 well plates, left overnight and then incubated
for 4 h with 5 µM LCL161 or 50 µM birinapant followed by
addition of Oligomycin (1 µM) (Sigma Aldrich—O4876)
and Antimycin A (1 µM) (Sigma Aldrich—A8674) for 16 h.
Cells were harvested and lysed in DISC lysis buffer fol-
lowed by detection of Cytochrome C by western blot. Actin
was used as a loading control.

Xenophagy assays
S. Typhimurium used in all analysis was a patient

derived strain identified through sera agglutination.
Salmonella were cultured overnight in LB at 37 °C. On
the same day 100,000 cells/well of MEFs were seeded in
12 well plates. The next day, Salmonella were diluted
1:33 and incubate without shaking for 3 h at 37 °C. Sal-
monella were harvested by centrifugation and washed
with PBS two times before re-suspending in DMEM
without any antibiotics. The cells were adjusted to have
an OD600 of 0.5 by diluting with DMEM. One hundred
microlitre of Salmonella culture was added to each well
of MEFs and plates spun for 5 min in 37 °C centrifuge at
1800RPM. Cells were incubated for a further 5 min at 37
°C before washing cells twice with PBS at 37 °C. incubate
cells at 37 °C in DMEM without antibiotics for 20 min.
Cells were incubated in DMEM with gentamicin at 50
μg/ml for 40 min at 37 °C. Cells were changed to DMEM
containing 5 μg/ml gentamicin and incubated for 5 h at
37 °C. For CFU calculations cells were washed twice with
PBS and then lysed in 1 mL of lysis buffer (1% (v/v) TX-
100, 0.1% (w/v) SDS in PBS). Serial dilutions were plated
onto LB agar plates and CFU/mL calculated. For
immunofluoresence infections were perfomed as above
but on either glass coverslips or in 8 chamber micro-
slides (Ibidi) and were also washed twice in PBS and
fixed in 100% MeOH (−20 °C) for 20 min at (−20 °C).
Cells were stained with an antibody against S. Typhi-
murium LPS (santacruz sc52223) (1:100) in PBS with 3%

BSA for 30 min followed by staining with anti mouse
IgG-Cy3 (1:500) in PBS 3% BSA. Nuceli were stained
with Hoechst. Cells were imaged and the number of
bacteria per cell was counted from at least 50 cells for
each genotype per experiment.

Acknowledgements
The authors thank Barbara Joch for her excellent technical assistance. Atg5−/−

and Atg5+/+ MEFs were made from ATG5+/− mice, which were a kind gift
from Prof. Dr. Tobias Huber (University Medical Center Freiburg). mCherry-
Parkin expressing lentiviral constructs were a kind gift from Dr. Florian
Steinberg (Center for Biological Systems Analysis, University of Freiburg).

Author details
1Institute of Medical Microbiology and Hygiene, University Medical Center
Freiburg, Freiburg, Germany. 2Faculty of Medicine, University of Freiburg,
Freiburg, Germany. 3Renal Division, University Medical Center Freiburg,
Freiburg, Germany. 4Department of Neuroanatomy, University Freiburg,
Freiburg, Germany. 5Department of Medicine, University Medical Center
Hamburg-Eppendorf, Hamburg, Germany. 6Institute of Experimental
Immunology, University of Zurich, Zurich, Switzerland

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41419-018-0508-y).

Received: 23 November 2017 Revised: 8 March 2018 Accepted: 13 March
2018

References
1. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent

apoptosis. Cell 131, 682–693 (2007).
2. Wong, W. W.-L. et al. cIAPs and XIAP regulate myelopoiesis through cytokine

production in an RIPK1- and RIPK3-dependent manner. Blood 123, 2562–2572
(2014).

3. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent
interleukin-1 activation. Immunity 36, 215–227 (2012).

4. Weber, A. et al. Proapoptotic signalling through Toll-like receptor-3 involves
TRIF-dependent activation of caspase-8 and is under the control of inhibitor of
apoptosis proteins in melanoma cells. Cell Death Differ. 17, 942–951 (2010).

5. Vince, J. E. et al. TWEAK-FN14 signaling induces lysosomal degradation of a
cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J. Cell. Biol. 182,
171–184 (2008).

6. Vallabhapurapu, S. et al. Nonredundant and complementary functions of
TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent
alternative NF-kappaB signaling. Nat. Immunol. 9, 1364–1370 (2008).

7. Zarnegar, B. J. et al. Noncanonical NF-kappaB activation requires coordinated
assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and
TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371–1378 (2008).

8. Damgaard, R. B. et al. The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2
Signaling in Inflammation and Innate Immunity. Mol. Cell. 46, 746–758 (2012).

9. Aguilar, C. et al. Characterization of Crohn disease in X-linked inhibitor of
apoptosis–deficient male patients and female symptomatic carriers. J. Allergy
Clin. Immunol. 134, 1131–1141 (2014). e9.

10. Zeissig, Y. et al. XIAP variants in male Crohn’s disease. Gut 64, 66–76 (2014).
11. Speckmann, C. & Ehl, S. XIAP deficiency is a mendelian cause of late-onset IBD.

Gut 63, 1031–1032 (2014).
12. Rigaud, S. et al. XIAP deficiency in humans causes an X-linked lymphoproli-

ferative syndrome. Nature 444, 110–114 (2006).

Gradzka et al. Cell Death and Disease  (2018) 9:529 Page 14 of 15

Official journal of the Cell Death Differentiation Association

https://doi.org/10.1038/s41419-018-0508-y
https://doi.org/10.1038/s41419-018-0508-y


13. Damgaard, R. B. et al. Disease-causing mutations in the XIAP BIR2 domain
impair NOD2-dependent immune signalling. EMBO Mol. Med. 5, 1278–1295
(2013).

14. Hampe, J. et al. Association between insertion mutation in NOD2 gene and
Crohn’s disease in German and British populations. Lancet 357, 1925–1928
(2001).

15. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to
Crohn’s disease. Nature 411, 603–606 (2001).

16. Hugot, J.-P. et al. Association of NOD2 leucine-rich repeat variants with sus-
ceptibility to Crohn’s disease. Nature 411, 599–603 (2001).

17. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs
identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39,
207–211 (2007).

18. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1
to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11,
55–62 (2010).

19. Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J.-P. & McDonald, C.
ATG16L1 and NOD2 Interact in an autophagy-dependent antibacterial path-
way implicated in Crohn’s Disease pathogenesis. Gastroenterology 139,
1630–1641 (2010). e2.

20. Lapaquette, P., Bringer, M.-A. & Darfeuille-Michaud, A. Defects in autophagy
favour adherent-invasive Escherichia coli persistence within macrophages
leading to increased pro-inflammatory response. Cell. Microbiol. 14, 791–807
(2012).

21. Ktistakis, N. T. & Tooze, S. A. Digesting the expanding mechanisms of
autophagy. Trends Cell Biol. 26, 624–635 (2016).

22. Anding, A. L. & Baehrecke, E. H. Cleaning house: selective autophagy of
organelles. Dev. Cell 41, 10–22 (2017).

23. Zhangyuan Yin, C. P. D. J. K. Autophagy: machinery and regulation.Microb. Cell
3, 588 (2016).

24. Bosch, M. E. & Kielian, T. Neuroinflammatory paradigms in lysosomal storage
diseases. Front. Neurosci. 9, 417 (2015).

25. Shibutani, S. T., Saitoh, T., Nowag, H., Münz, C. & Yoshimori, T. Autophagy and
autophagy-related proteins in the immune system. Nat. Immunol. 16,
1014–1024 (2015).

26. Agyemang, A. F., Harrison, S. R., Siegel, R. M. & McDermott, M. F. Protein
misfolding and dysregulated protein homeostasis in autoinflammatory dis-
eases and beyond. Semin. Immunopathol. 37, 335–347 (2015).

27. Deretic, V. et al. Immunologic manifestations of autophagy. J. Clin. Invest. 125,
75–84 (2015).

28. Weisberg, E. et al. leu2010212a. Leukemia 24, 2100–2109 (2010).
29. Ganley, I. G., Wong, P.-M., Gammoh, N. & Jiang, X. Distinct autophagosomal-

lysosomal fusion mechanism revealed by thapsigargin-induced autophagy
arrest. Mol. Cell 42, 731–743 (2011).

30. Man, N., Chen, Y., Zheng, F., Zhou, W. & Wen, L.-P. Induction of genuine
autophagy by cationic lipids in mammalian cells. Autophagy 6, 449–454
(2014).

31. Zhang, J., Wang, J., Ng, S., Lin, Q. & Shen, H.-M. Development of a novel
method for quantification of autophagic protein degradation by AHA label-
ing. Autophagy 10, 901–912 (2014).

32. Shen, H.-M. & Mizushima, N. At the end of the autophagic road: an emerging
understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39,
61–71 (2014).

33. Jiang, P. et al. The HOPS complex mediates autophagosome-lysosome fusion
through interaction with syntaxin 17. Mol. Biol. Cell. 25, 1327–1337 (2014).

34. Narendra, D., Tanaka, A., Suen, D.-F. & Youle, R. J. Parkin is recruited selectively
to impaired mitochondria and promotes their autophagy. J. Cell. Biol. 183,
795–803 (2008).

35. Baudot, A. D., Haller, M., Mrschtik, M., Tait, S. W. G. & Ryan, K. M. Using
enhanced-mitophagy to measure autophagic flux. Methods 75, 105–111
(2015).

36. Birmingham, C. L., Smith, A. C., Bakowski, M. A., Yoshimori, T. & Brumell, J. H.
Autophagy controls Salmonella infection in response to damage to the
Salmonella-containing vacuole. J. Biol. Chem. 281, 11374–11383 (2006).

37. Erpapazoglou, Z., Walker, O. & Haguenauer-Tsapis, R. Versatile roles of K63-
linked ubiquitin chains in trafficking. Cells 3, 1027–1088 (2014).

38. Yabal, M. et al. XIAP Restricts TNF- and RIP3-dependent cell death and
inflammasome activation. Cell Rep. 7, 1796–1808 (2014)

39. Speckmann, C. et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the
spectrum of presenting manifestations beyond hemophagocytic lymphohis-
tiocytosis. Clin. Immunol. 149, 133–141 (2013).

40. Schwerd, T. et al. Impaired antibacterial autophagy links granulomatous
intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency
with NOD2 variants in Crohn’s disease. Gut 66, 1060–1073 (2017).

41. Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of
damaged mitochondria. Cell 164, 896–910 (2016).

42. Jimenez Orgaz, A. et al. Control of RAB7 activity and localization through the
retromer‐TBC1D5 complex enables RAB7‐dependent mitophagy. EMBO J. 37,
235–254 (2018).

Gradzka et al. Cell Death and Disease  (2018) 9:529 Page 15 of 15

Official journal of the Cell Death Differentiation Association


	Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes
	Introduction
	Results
	IAP antagonism causes accumulation of autophagosomes
	IAP antagonists block autophagic flux
	cIAP2 and XIAP but not cIAP1 regulate autophagic flux
	IAP antagonists block turnover of long-lived proteins
	IAPs do not regulate endocytosis
	Mitophagy and xenophagy are blocked in IAP antagonist-treated cells

	Discussion
	Methods
	Reagents
	Cell culture
	Fluorescence microscopy of LC3
	siRNA treatment
	Long-lived protein degradation assay
	EGFR degradation assay
	Assay of endocytosis and fusion with lysosomes
	Electron microscopy
	Mitophagy assays
	Xenophagy assays

	ACKNOWLEDGMENTS




